江苏科技信息 ›› 2016, Vol. 33 ›› Issue (20): 45-46.doi: 10.3969/j.issn.1004-7530.2016.20.024

• 论文 • 上一篇    下一篇

基于多元线性回归的故障报修受理数量预测研究

蔡冬阳, 彭涛   

  1. 国网江苏省电力公司电力科学研究院,江苏南京,211103;国网江苏省电力公司,江苏南京,210024
  • 出版日期:2016-07-15 发布日期:2016-07-15

Research on the Number Prediction of Accepted Fault Repairs Based on the Multiple Linear Regression Model

Cai Dongyang, Peng Tao   

  • Online:2016-07-15 Published:2016-07-15

摘要: 故障报修受理数量预测是电网运行和供电服务的重要内容。科学、准确的故障报修受理数量预测对电力行业的健康发展,乃至对人民生活水平的提高均有着十分重要的意义。文章运用数据挖掘技术中的多元线性回归方法,基于最高气温、最大风速、日降雨量、湿度环境变量和故障报修受理数量的历史数据构建故障报修受理数量分时段预测模型,并通过多种预测算法的比较验证了多元线性回归预测的效果。该预测模型为故障报修受理数量预测提供科学依据,进而保证了电网安全稳定运行及为电力用户提供高质量服务。

关键词: 数据挖掘, 多元线性回归, 分时段

Abstract: The number prediction of accepted fault repairs is an important part of grid operation and power supply services. Predicting the number of accepted fault repairs scientifically and accurately is good for the healthy development of the power industry, and the improvement of the people's living standards. This paper uses the multiple linear regression algorithms as the data mining method, building the time-segment prediction model about the number of accepted fault repairs based on the maximum temperature, the maximum wind, the rainfall amount, the humidity, and the historical data, and testing the multiple linear regression model's validity by comparing various prediction algorithm. The model provides the scientific basis for the number prediction of accepted fault repairs; thereby ensures the safety and stability of the power grid and provides high quality services for the power users.