《无线互联科技》杂志社 ›› 2025, Vol. 22 ›› Issue (1): 76-79.

• 研究创新 • 上一篇    下一篇

基于绿波带控制策略的交通流量优化模型

赵兴文   

  1. 浙江金融职业学院,浙江 杭州 310000
  • 出版日期:2025-01-10 发布日期:2025-03-21
  • 作者简介:赵兴文(1995— ) ,男,讲师,硕士;研究方向:人工智能,深度学习。
  • 基金资助:
    浙江省高职教育“十四五”第一批教学改革项目;项目名称:现场工程师“长效”培养的体系化研究与实施——以数据处理工程师为研究对象;项目编号:jg20210151。浙江金融职业学院校级青年科研一般项目;项目编号:2024YB53。浙江金融职业学院2023年度教学改革项目;项目编号:JX202306。

Traffic flow optimization model based on green wave control strategy

ZHAO Xingwen   

  1. Zhejiang Financial College, Hangzhou 310000, China
  • Online:2025-01-10 Published:2025-03-21

摘要: 近年来,随着城市化进程的加快、机动车数量的迅速增加以及旅游出行范围的扩大,城市道路交通拥堵和停车位不足问题愈发突出。文章以一个某地区车流量较大的路口数据为例,分析其周边道路的交通流量情况,针对此情况采取基于绿波带控制策略为该区域提供合适的交通流量优化方案改进交通管理措施,为改善交通流量提供一种优质的解决方案。

关键词: K均值聚类算法, 滑动窗口算法, 绿波带控制策略, 遗传算法

Abstract: In recent years, with the acceleration of urbanization, the rapid increase of the number of motor vehicles and the expansion of the scope of travel, the problems of urban road traffic congestion and insufficient parking spaces have become increasingly prominent. In this paper, the traffic flow data of an intersection with large traffic flow in a certain area is taken as an example to analyze the traffic flow of the surrounding roads, and in view of this situation, the green wave band control strategy is adopted to provide an appropriate traffic flow optimization scheme for the area to improve traffic management measures, which provides a high-quality solution to improve traffic flow.

Key words: K-means clustering algorithm, sliding window algorithm, green wave control strategy, Genetic Algorithm

中图分类号: