《无线互联科技》杂志社 ›› 2025, Vol. 22 ›› Issue (1): 80-83.

• 研究创新 • 上一篇    下一篇

基于集成学习的发电行业数字化转型信息安全风险预测模型研究

刘晓晗, 罗今   

  1. 华电金沙江上游水电开发有限公司,四川 成都 610041
  • 出版日期:2025-01-10 发布日期:2025-03-21
  • 作者简介:刘晓晗(1994— ),女,硕士;研究方向:企业数字化转型及数字化安全管控。

Research on the information security risk prediction model of digital transformation of power generation industry based on integrated learning

LIU Xiaohan, LUO Jin   

  1. Huadian Jinsha River Upstream Hydropower Development Co., Ltd., Chengdu 610041, China
  • Online:2025-01-10 Published:2025-03-21

摘要: 为提高发电行业的信息安全防护水平,保障电网的安全稳定运行,文章利用集成学习,开展了发电行业数字化转型信息安全风险预测模型研究。文章首先识别发电行业数字化转型信息安全风险,确定安全风险等级与优先级;其次,从数字化转型原始数据中,文章识别并提取出对预测信息安全风险有用的特征;在此基础上,文章利用集成学习,构建风险预测模型,对潜在的信息安全风险作出全方位的预测。实验结果表明,该模型在风险预测覆盖率上表现出明显的优势,均达到了98%以上的预测覆盖率,提高了对信息安全风险的预测能力。

关键词: 集成学习, 发电行业, 数字化转型, 信息, 安全, 风险, 预测

Abstract: In order to improve the level of information security protection in the power generation industry and ensure the safe and stable operation of the power grid, this paper uses integrated learning to carry out the research on the information security risk prediction model of the digital transformation of the power generation industry. Firstly, the paper identifies the information security risks of the digital transformation of the power generation industry, and determines the security risk level and priority. Secondly, from the original data of the digital transformation, the paper identifies and extracts the features that are useful for predicting information security risks. On this basis, the paper uses ensemble learning to contruct a risk prediction model, which makes a comprehensive prediction of potential information security risks. The experimental results show that the model shows obvious advantages in the risk prediction coverage, which reaches more than 98%, and improves the prediction ability of information security risk.

Key words: integrated learning, power generation industry, digital transformation, information, security, risk, forecast

中图分类号: